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Abstract. Almost singular linear systems arise in discrete ill-posed problems. Either because of
the intrinsic structure of the problem or because of preconditioning, the spectrum of the coefficient
matrix is often characterized by a sizable gap between a large group of numerically zero eigenvalues
and the rest of the spectrum. Correspondingly, the right-hand side has leading eigencomponents
associated with the eigenvalues away from zero. In this paper the effect of this setting in the
convergence of the Generalized Minimal RESidual (GMRES) method is considered. It is shown that
in the initial convergence phase of the iterative algorithm, the residual components corresponding to
the large eigenvalues are reduced in norm, and these can be monitored without extra computation. A
stopping criterion based on the discrepancy principle is used. Our analysis is supported by numerical
experiments on benchmark ill-posed problems and on an ill-posed Cauchy problem for a parabolic
equation, where a singular (low-rank) preconditioner is employed.

1. Introduction. Large, sparse nonsymmetric and singular linear systems arise
when certain partial differential equations (PDE) are discretized. In [6] conditions are
given for the convergence without breakdown of the Generalized Minimum Residual
algorithm (GMRES) [35] applied to such problems. Since the appearance of [6] many
papers have been devoted to the analysis and application of GMRES for exactly
singular problems, see [24] for a rather extensive account of the relevant literature.

In this paper we are concerned with almost singular (or numerically singular)
linear systems,

Ax = b, (1.1)

where A ∈ Cn×n. Such systems occur in connection with ill-posed problems, and for
some problems GMRES works well, while for others it performs badly, see, e.g., [27,
Examples 5.3 and 5.1, respectively]. Recently it has been demonstrated that GMRES
gives a good approximate solution in few iterations for certain ill-posed problems for
PDE’s, when a singular preconditioner is used [32, Part III]. However, so far a deeper
analysis of the properties of GMRES applied to almost singular systems is lacking.

The purpose of the present paper is to analyze and explain the convergence be-
havior of GMRES for linear systems that are almost singular, the way they occur in
ill-posed problems. Previous attempts have often focused on information associated
with the singular value decomposition of the matrix, see, e.g., [27, 17, 5]. Instead, in
agreement with, e.g., [7, 8], we will rely on spectral information of the problem, with
the Schur decomposition of the coefficient matrix as the core theoretical tool. Indeed,
in some cases the matrix has a cluster of eigenvalues of magnitude O(1) that is well
separated from another cluster of eigenvalues of small magnitude. Correspondingly,
the right-hand side has large and leading components onto the eigendirections associ-
ated with the cluster away from the origin. Assuming that the linear system (1.1) is
a (possibly large) perturbation of an exactly singular system of rank m, we will show
that:

• in the first iterations GMRES mainly reduces the norm of the residual as if
solving the unperturbed system;
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• after at most m iterations, but often much earlier, the norm of the residual is
of the order of magnitude of the perturbation, and if the GMRES procedure
is then stopped, it gives a good approximation of the minimum norm solution
of the exactly singular system.

Our theoretical findings generalize and are in agreement with the results discussed
in [6], [24] for exactly singular systems. In particular, our analysis specifically explores
the case when the condition for obtaining a minimum norm solution is not met, which
is usually the setting encountered in ill-posed problems.

We will also consider the case when the eigenvalues are not clustered (when the
numerical rank is ill-determined, which is often the case in ill-posed problems, see,
e.g., the discussion in [2, 8]), and show theoretically and by examples that GMRES
will give a good approximate solution if the iterations are stopped when the residual
is of the order of the perturbation.

Numerically singular systems with clustered eigenvalues occur when singular pre-
conditioners are applied to discrete ill-posed linear systems Ax = b [32, Part III]. For
such a problem, arising from the discretization of a linear equation with a compact
operator, the ill-posedness manifests itself in the blow-up of high frequency compo-
nents in the numerical solution. In order for the problem to be approximately solvable
the solution must be well represented in terms of the low frequency part of the oper-
ator. If the preconditioner M gives a good approximation of the low frequency part
of the operator, but omits the high frequency part, then the preconditioned problem
AM†y = b has the properties above, i.e., AM† is numerically singular, but with a
well-conditioned low rank part, the minimum norm solution of which will give a good
approximation to the solution of the ill-posed problem.

It is well-known, see, e.g., [15, 29], that iterative methods applied to ill-posed prob-
lem exhibit semi-convergence: initially the approximate solution converges towards
the “true solution”, then it deteriorates and finally blows up. Such a convergence
behavior occurs also here, and we give a theoretical explanation. Note, however,
that in the case of singular preconditioners semi-convergence usually does not apply
to the final solution approximation, but only to an intermediate quantity. A stop-
ping criterion based on the discrepancy principle will give a solution that is close to
optimal.

We will use the following notation. The conjugate transpose of a matrix A is A∗.
The Euclidean vector norm is denoted ‖x‖ = (x∗x)1/2, and the corresponding matrix
norm is ‖A‖ = max‖x‖=1 ‖Ax‖. The Frobenius norm is ‖A‖F = (

∑
i,j |aij |2)1/2. The

singular values of a matrix B ∈ Cm×n, where m ≤ n, are denoted σi, i = 1, 2, . . . ,m,
and are ordered as σ1 ≥ σ2 ≥ · · ·σm ≥ 0; if σm 6= 0, its condition number is
κ2(B) = σ1/σm. A† denotes the Moore-Penrose pseudoinverse of A.

2. Theory for the Exactly Singular Case. Given a starting guess x0 and
the associated residual r0 = b − Ax0, GMRES determines an approximate solution
xk to (1.1) as xk ∈ x0 + Kk(A, r0) where Kk(A, r0) =span{r0, Ar0, . . . , A

k−1r0} is
the Krylov subspace, by requiring that the corresponding residual rk = b − Axk
has minimum norm. The problem of solving a singular linear system Ax = b using
GMRES is treated in [6, 24], where the following result is proved.

Proposition 2.1. GMRES determines a least squares solution x∗ of a singular
system Ax = b, for all b and starting approximations x0, without breakdown, if and
only if N (A) = N (A∗). Furthermore, if the system is consistent and x0 ∈ R(A),
then x∗ is a minimum norm solution.

Assume that the rank of A is equal to m. For the analysis it is no restriction to
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assume that the matrix of the linear system has the structure1[
A11 A12

0 0

] [
y(1)

y(2)

]
=

[
c(1)

c(2)

]
, A11 ∈ Cm×m. (2.1)

It is easy to see (cf. [24]) that the condition N (A) = N (A∗) is equivalent to A12 = 0.
Similarly, the consistency condition is equivalent to c(2) = 0.

Obviously, applying GMRES to the linear system[
A11 0
0 0

] [
y(1)

y(2)

]
=

[
c(1)

0

]
, (2.2)

is mathematically equivalent to applying GMRES to A11y
(1) = c(1). Due to the finite

termination property of Krylov methods it will never take more than m steps to obtain
the solution of this problem (in exact arithmetic).

Finally in this section, the properties of the Krylov subspace ensure that applying
GMRES to [

A11 A12

0 0

] [
y(1)

y(2)

]
=

[
c(1)

0

]
,

with zero starting approximation, is also mathematically equivalent to applying GM-
RES to A11y

(1) = c(1). A more common situation occurs when the (2,2) block of (2.1)
is almost zero, that is it has small but nonzero entries. In this case, the role of the
A12 block becomes more relevant. We analyze such a setting in the next section for a
general A, by first performing a Schur decomposition.

3. The Almost Singular Case. Let A = UBU∗ be the Schur decomposition
of A [13, p. 313], where B is upper triangular with diagonal elements ordered by
decreasing magnitude. By a change of variables we get the linear system By = c,
which is equivalent to the original one, and which we partition2 as[

L1 G
0 L2

] [
y(1)

y(2)

]
=

[
c(1)

c(2)

]
, (3.1)

where L1 ∈ Cm×m. Here we assume3

|λmin(L1)| � |λmax(L2)|, ‖c(1)‖ � ‖c(2)‖ = δ. (3.2)

By λmin(L1) we mean the eigenvalue of smallest modulus. We also assume that L1 is
well conditioned, i.e. ‖L−1

1 ‖ is not large. The eigenvalue conditioning is related to an
assumption that B is almost singular. Thus L2 can be considered as a perturbation of
zero, either corresponding to floating point “noise” or due to some other type of noise,
and the same applies to the lower part c(2) of the right hand side. We shall also assume
that ‖G‖ has a small or moderate value, so that we exclude the occurrence of non-
normality influencing the two diagonal blocks. The assumptions in (3.2) also exclude

1In [24] a transformation of the system is done by decomposing the space Cn into R(A) and
R(A)⊥.

2The same notational convention will be used throughout.
3The meaning of the “much larger than” sign will depend on the context: in the case of singular

preconditioners it can be several orders of magnitude, while in the case when GMRES is applied
directly to an ill-posed problem, it may be only two orders of magnitude, see the numerical examples.
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the case, for instance, where the given problem is a perturbation of a nonsymmetric
matrix with all zero eigenvalues and a single eigenvector; cf., e.g., [27, Example of
Section 5.1]. Note that the perturbed eigenvalues will tend to distribute in a small
disk around the origin. Our assumption is not restrictive, since it is already known
that GMRES will perform very badly in this setting; see, e.g., [28, Example R, p.
787].

If the linear system represents an ill-posed problem4, then the condition ‖c(1)‖ �
‖c(2)‖ is reminiscent of the discrete Picard criterion in the singular value setting [19].
In this context it is not meaningful to solve the linear system exactly but only to
compute an approximate solution y, whose residual r = c−By satisfies ‖r‖ ≈ ‖c(2)‖.
This is closely related to the use of the discrepancy principle in the regularization of
ill-posed problems, see, e.g., [12, p. 83],[21, p. 179].

Now, since the linear system (3.1) can be seen as a perturbation of (2.2), we may
ask whether it is possible to “solve” (3.1) as efficiently as (2.2). We will show in
Section 3.1 that a minimal residual method onto a subspace of dimension m, where m
is the size of L1, may provide a sufficiently small residual, whose size depends on ‖L2‖,
‖G‖, and ‖c(2)‖, as expected. Other quantities also enter the picture. In Section 3.2
we will describe how the use of a minimal residual method with a Krylov subspace,
allows one to derive a better residual, and more accurate bounds for its norm. All
our results show that in addition to the size of the matrices involved, also the spectral
“distance” between L1 and L2 has a role in bounding the residual.

We also remark that the model derived by splitting the spectral domain in a
“good” part and in a “bad” part has been used both in eigenvalue computation, see,
e.g., [3], as well as in the numerical solution of ill-posed linear systems, see, e.g., [2].
In both cited cases, however, the aim is to computationally exploit an approximate
decomposition so as to accelerate the convergence of the employed method. In this
paper the exact splitting is a theoretical device, that allows us to explain the practical
behavior of GMRES in certain circumstances.

To proceed we need to introduce some notation and definitions. Under the eigen-
value assumption in (3.2) we can write

B =

[
L1 G
0 L2

]
= [X1, X2]

[
L1 0
0 L2

] [
Y ∗1
Y ∗2

]
, (3.3)

where [Y1, Y2]∗ = [X1, X2]−1, and

[X1, X2] =

[
I P
0 I

]
, [Y1, Y2] =

[
I 0
−P ∗ I

]
, (3.4)

and P is the unique solution of the Sylvester equation L1P − PL2 = −G. Note that

‖X2‖ ≤ 1 + ‖P‖, ‖Y1‖ ≤ 1 + ‖P‖, where ‖P‖ ≤ ‖G‖
sep(L1, L2)

, (3.5)

and sep(L1, L2) is the separation function5. It is known, cf., e.g., [36, Th.V.2.3], that
sep(L1, L2) ≤ mini,j |λi(L1)− λj(L2)| where λi(X) denotes the ith eigenvalue of X.

4By a discrete, linear ill-posed problem we mean one whose condition number is of the order of
magnitude 1/µ, where µ is the unit round off of the floating point system.

5The sep function is defined as sep(L1, L2) = inf‖P‖=1 ‖T (P )‖ where T : P 7→ L1P − PL2 (cf.,
e.g., [36, sec.V.2.1])
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Definition 3.1. [37, p. 36] The grade of a matrix L with respect to a vector v
is the degree of the lowest degree monic polynomial p such that p(L)v = 0.

The polynomial giving the grade is unique and it is called in the literature the
minimum polynomial; see [14], [26] and references therein. In this paper we shall adopt
the term grade polynomial, to avoid confusion with the minimum residual GMRES
polynomial.

3.1. Using a General Minimal Residual Projection Method. We start
by providing an upper bound for the residual norm for a general projection method
onto a given subspace, enforcing a minimal residual condition. The bound depends on
‖L2‖ ‖L−1

1 ‖, and therefore it is useful only when this quantity is small. This is often
the case in the singular preconditioner application, see Section 4. Sharper bounds for
GMRES, applicable in the case of ill-determined numerical rank, will be obtained in
Section 3.2.

The case when G = 0 and L2 6= 0 provides the simplest generalization of the
singular case described in Proposition 2.1. In this setting, it is possible to estimate
the residual of an approximate solution as follows. Let

B0 =

[
L1 0
0 L2

]
,

where L1 ∈ Rm×m, and let Vm ∈ Rn×m,

Vm =

[
V

(1)
m

V
(2)
m

]

be a full column rank matrix such that V
(1)
m ∈ Rm×m is orthogonal and ‖V (2)

m ‖ ≤ 1.
We can now write

‖B0Vmy − c‖2 =

∥∥∥∥∥
[
L1V

(1)
m y − c(1)

L2V
(2)
m y − c(2)

]∥∥∥∥∥
2

= ‖L1V
(1)
m y − c(1)‖2 + ‖L2V

(2)
m y − c(2)‖2.

Choosing z(1) = V
(1)
m y(1) = L−1

1 c(1), the first term is made equal to zero, and we can
estimate

min
x∈range(Vm)

‖B0x− c‖ = min
y∈Rm

‖B0Vmy − c‖ ≤ ‖B0Vmy
(1) − c‖

= ‖L2V
(2)
m y(1) − c(2)‖ ≤ ‖L2‖ ‖L−1

1 ‖‖c(1)‖+ ‖c(2)‖.

Then for any full column rank matrix Vm+j = [Vm Vj ] ∈ Rn×(m+j) we have

min
x∈range(Vm+j)

‖B0x− c‖ ≤ min
x∈range(Vm)

‖B0x− c‖ ≤ ‖L2‖ ‖L−1
1 ‖‖c(1)‖+ ‖c(2)‖. (3.6)

Next consider the case G 6= 0. We recall from (3.3) that B can be block-
diagonalized, B = XB0X

−1, and we have the following result.
Theorem 3.2. Let χ = ‖G‖/sep(L1, L2), and assume that we have chosen a

full column rank matrix Wm ∈ Rn×m such that the matrix Vm in the decomposition

VmRm = X−1Wm has an orthogonal leading m×m block V
(1)
m , and such that ‖V (2)

m ‖ ≤
1 and Rm is nonsingular. Then the residual rm+j of any minimal residual projection
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method onto range(Wm+j), where Wm+j = [Wm Wj ] has full column rank, satisfies

‖rm+j‖ = min
x∈range(Wm+j)

‖Bx− c‖ = min
y
‖BWm+jy − c‖

≤ (1 + χ)
(
‖L−1

1 ‖‖L2‖(1 + χ)‖c(1)‖+ ‖c(2)‖
)
.

Proof. We have

‖BWmy − c‖ = ‖XB0X
−1Wmy − c‖ = ‖X(B0X

−1Wmy −X−1c)‖
= ‖X(B0Vm(Rmy)−X−1c)‖ = ‖X(B0Vmz − u)‖,

with z = Rmy and u = X−1c. For the quantity in parentheses, we can thus proceed

in a way similar to the case G = 0, i.e., we choose z(1) = (V
(1)
m )∗L−1

1 u(1). Recalling
the bound (3.5) for ‖X2‖, we obtain

min
y
‖BWmy − c‖ ≤ ‖X2‖‖L2V

(2)
m z(1) − u(2)‖

≤ (1 + ‖P‖)‖L2V
(2)
m z(1) − u(2)‖

≤ (1 + χ)
(
‖L−1

1 ‖‖L2‖(1 + χ)‖c(1)‖+ ‖c(2)‖
)
,

where we have used ‖u(1)‖ ≤ (1 + ‖P‖)‖c(1)‖.
Remark 3.3. The procedure above is not restricted to minimal residual methods.

Any approach that generates y as the solution to the projected problem restricted to
L1 will give the same bound.

Example 3.4. The example presented in Section 5.2 has numerical rank 20,
and we solve it using GMRES. The relevant quantities of the residual estimate are
‖L−1

1 ‖ = 1.58, ‖L2‖ = 5.8·10−16, χ = 0.14, and the true residual after a few iterations
is 6.2 · 10−3. The estimate gives

‖rm+j‖ ≤ 7.2 · 10−3,

which slightly overshoots the true value by a factor 1 + χ, approximately. Note that
this residual is attained already after 4 GMRES steps.

Clearly, the bound in Theorem 3.2 does not take into account the information con-
tained in range(Vk) and therefore it holds for any minimal residual projection method.
On the other hand, in some situations the bound may be weak, as ‖L2‖ ‖L−1

1 ‖‖c(1)‖
only depends on the singular value gap between L1 and L2, and it may be significantly
larger than ‖c(2)‖. Therefore, in some cases the bound may highly overestimate the
actual residual, which is expected to be of the order of ‖c(2)‖ for j ≥ 1 in (3.6).
Sharper bounds that are useful when the gap is small may be obtained by taking into
account specific choices of range(Vk), as we will do in Section 3.2 for GMRES.

The following variant of the theorem can be used in a situation when L1V
(1)
k z =

u(1) is consistent for k < m (recall that u = X−1c).

Theorem 3.5. Let VkRk = X−1Wk, and assume the leading m × k block V
(1)
k

has full column rank and is such that L1V
(1)
k z = u(1) is consistent. Then

‖rk‖ = min
y
‖BWk y − c‖

≤ (1 + χ)
(
‖L2V

(2)
k ‖ ‖(L1V

(1)
k )†‖(1 + χ)‖c(1)‖+ ‖c(2)‖

)
.
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Proof. We have ‖BWky− c‖ = ‖X(B0Vkz−u)‖. Since V
(1)
k has full column rank,

so has L1V
(1)
k , and the vector z(1) such that L1V

(1)
k z(1) = u(1) is unique, and can be

written z(1) = (L1V
(1)
k )†u(1). Then,

‖L2V
(2)
k z(1)‖ ≤ ‖L2V

(2)
k ‖ ‖(L1V

(1)
k )†‖ ‖u(1)‖,

and the result is obtained as in the proof of Theorem 3.2.
Consider now the case when the projection matrix Wk is constructed using the

Arnoldi method, and the grade m∗ of L1 with respect to u(1) is smaller than m. To

apply Theorem 3.5 we must show that V
(1)
m∗ has full column rank. We first consider the

linear system B0x = u. Due to the structure of B0, we generate the Krylov subspace

Kk(B0, c) = span

{(
u(1)

u(2)

)
,

(
L1u

(1)

L2u
(2)

)
, . . . ,

(
Lm∗−1

1 u(1)

Lm∗−1
2 u(2)

)}
. (3.7)

The following lemma shows that the full column rank assumption is satisfied.
Lemma 3.6. Assume that the columns of the matrix

Vm∗ =

[
V

(1)
m∗

V
(2)
m∗

]
∈ Rn×m∗

constitute an orthonormal basis of the Krylov subspace (3.7). Then the upper m×m∗
block V

(1)
m∗ has full column rank.

Proof. Let K(i) = [u(i), Liu
(i), . . . , Lm∗−1

i u(i)] and

K =

[
K(1)

K(2)

]
.

The columns of K(1) are linearly independent, otherwise the zero linear combination
would imply the existence of a polynomial p of degree strictly less than m∗ such that
p(L(1))u(1) = 0, which is a contradiction with the definition of grade. Therefore,
the matrix K>K = (K(1))>K(1) + (K(2))>K(2) is nonsingular, the columns of Vm∗ =

K(K>K)−
1
2 are orthonormal with first block V

(1)
m∗ having full column rank. Any other

orthonormal basis differs from Vm∗ for a right multiplication by a unitary matrix,
leaving the full rank property of the first block unchanged.

Next assume that for any k ≥ 1 we have generated a Krylov (Arnoldi) factoriza-
tion of B

BWk = Wk+1Hk, w1 =
ŵ

‖ŵ‖
, ŵ =

[
c(1)

c(2)

]
, (3.8)

with Hk ∈ R(k+1)×k upper Hessenberg. Using the relation B = XB0X
−1 we get the

Krylov (Arnoldi) factorization of B0

B0Vk = Vk+1Ĥk, v1 =
v̂

‖v̂‖
, v̂ =

[
c(1) − Pc(2)

c(2)

]
(3.9)

where

VkSk = X−1Wk (3.10)
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is the thin QR decomposition, and Ĥk = Sk+1HkS
−1
k is upper Hessenberg. Thus,

Arnoldi’s method applied to B with starting vector c uniquely defines another se-
quence of vectors, which can be generated by Arnoldi’s method applied to B0 with
starting vector v1 defined by (3.9). Using this correspondence for k = m∗, we can
prove the following result.

Theorem 3.7. Assume that m∗ is the grade of L1 with respect to u(1) = c(1) −
Pc(2). If the projection matrix Wm∗ is constructed using the Arnoldi method, then

‖rm∗‖ = min
y
‖BWm∗ y − c‖

≤ (1 + χ)
(
‖L2V

(2)
m∗
‖ ‖(L1V

(1)
m∗

)†‖(1 + χ)‖c(1)‖+ ‖c(2)‖
)
,

where Wm∗ and Vm∗ are related by (3.10).
Proof. Due to the equivalence between (3.8) and (3.9), the columns of Vm∗ are

an orthonormal basis of the Krylov subspace (3.7). The result now follows from
Lemma 3.6 and Theorem 3.5.

We expect that for general problems m∗ will be close to m. However, in the
case of preconditioning of ill-posed equations, L1 may have extremely close or even
multiple eigenvalues (depending on the quality of the preconditioner), so that the
method behaves as if L1 had a grade smaller than m. This phenomenon is largely
due to the polynomial nature of Krylov subspaces, and it is further explored in the
next section.

3.2. Using optimal GMRES. In this section we show how much one can gain
by exploiting the approximation properties of Krylov subspaces, in the context of
minimal residual methods. For any polynomial pm of degree not greater than m we
can write

pm(B)c = [X1, X2]

[
pm(L1)Y ∗1 c
pm(L2)Y ∗2 c

]
= X1pm(L1)Y ∗1 c+X2pm(L2)Y ∗2 c,

so that, using XT
1 X1 = I, and Y ∗2 c = c(2),

‖pm(B)c‖ ≤ ‖pm(L1)Y ∗1 c‖+ ‖X2pm(L2)c(2)‖. (3.11)

We denote by Pk the set of polynomials p of degree not greater than k and such
that p(0) = 1. We also recall that k iterations of GMRES generate an approximate
solution xk for Bx = c with xk ∈ Kk(B, c) (for a zero initial guess) by minimizing
the residual rk = c−Bxk [34]. In terms of polynomials, this implies that rk = pk(B)c
where pk = arg minp∈Pk

‖p(B)c‖; pk is called the GMRES residual polynomial.
The following theorem provides a description of the GMRES convergence when

the spectra of L1 and L2 are well separated, and the magnitude of c(2) is small
compared to that of the whole vector c, as is the case in our setting. The proof is in
the spirit of that in [9].

Theorem 3.8. Let m∗ be the grade of L1 with respect to Y ∗1 c. Assume k iterations
of GMRES have been performed on Bx = c, and let rk be the corresponding residual.
Let ∆2 be a circle centered at the origin and radius ρ, enclosing all eigenvalues of L2.

i) If k < m∗, let s
(1)
k = φk(L1)Y ∗1 c be the GMRES residual associated with L1z =

Y ∗1 c, where φk ∈ Pk. Then

‖rk‖ ≤ ‖s(1)
k ‖+ ‖X2‖γkτ, τ = ρ max

z∈∆2

‖(zI − L2)−1c(2)‖, (3.12)
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where γk = max
z∈∆2

k∏
i=1

|θi − z|/|θi| and θi are the roots of φk.

ii) If k = m∗ + j, j ≥ 0, let s
(2)
j = ϕj(L2)c(2) be the GMRES residual associated

with L2z = c(2) after j iterations, where ϕj ∈ Pj, so that ‖s(2)
j ‖ ≤ ‖c(2)‖. Then

‖rk‖ ≤ ργk∗‖s
(2)
j ‖‖X2‖max

z∈∆2

‖(zI − L2)−1‖, (3.13)

where γm∗ = max
z∈∆2

m∗∏
i=1

|θi − z|/|θi| and θi are the roots of the grade polynomial of L1.

Proof. Let us write rk = pk(B)c, where pk is the GMRES residual polynomial.
i) For k < m∗, we have ‖rk‖ = minp∈Pk

‖p(B)c‖ ≤ ‖φk(B)c‖, where φk is the
GMRES residual polynomial associated with L1 and Y ∗1 c. Using (3.11), we have

‖φk(B)c‖ ≤ ‖φk(L1)Y ∗1 c‖+ ‖X2φk(L2)c(2)‖ ≤ ‖s(1)
k ‖+ ‖X2‖ ‖φk(L2)c(2)‖.

To evaluate the last term we use the Cauchy integral representation. ¿From φk(L2)c(2)

= 1
2πı

∫
∆2
φk(z)(zI − L2)−1c(2)dz, we obtain

‖φk(L2)c(2)‖ ≤ ρ max
z∈∆2

|φk(z)|max
z∈∆2

‖(zI − L2)−1c(2)‖.

Using φk(z) =

k∏
i=1

(1− z

θi
), the first result follows.

For k ≥ m∗, we select the polynomial pk(z) = qm∗(z)ϕj(z), where qm∗ is the grade
polynomial, namely it satisfies qm∗(L1)Y ∗1 c = 0, so that pk(L1)Y ∗1 c = 0; moreover,
ϕj(z) is the GMRES residual polynomial after j iterations on L2z = c(2). Then

‖rk‖ ≤ ‖pk(B)c‖ ≤ ‖pk(L1)Y ∗1 c‖+ ‖X2pk(L2)c(2)‖
≤ ‖X2‖ ‖pk(L2)c(2)‖ ≤ ‖X2‖ ‖qm∗(L2)‖ ‖ϕj(L2)c(2)‖.

Once again, using the Cauchy integral representation,

‖qm∗(L2)‖ ≤ ρ max
z∈∆2

|qm∗(z)|max
z∈∆2

‖(zI − L2)−1‖.

Since qm∗(z) =

m∗∏
i=1

(1− z

θi
), the result follows.

A few comments are in order before we proceed with some examples. Assuming
that m∗ � n, Theorem 3.8 shows that the behavior of the first few iterations of
GMRES is driven by the convergence of the reduced system L1x1 = Y ∗1 c. During
these iterations, the noise-related part of the problem may affect the bound on the

overall residual if B is non-normal, otherwise the first term ‖s(1)
k ‖ dominates. Such

non-normality reveals itself in two different ways: a) The quantity τ may be large if
the second diagonal block L2 is very non-normal, so that its resolvent norm may be
large even for z not too close to the spectrum; b) Due to (3.5), ‖P‖ and thus ‖X2‖
may be large if L1 and L2 are not well separated, in terms of sep function, while the
norm of the “coupling” matrix G is sizable.

If G = 0, then X2 has orthonormal columns and only the non-normality of L2

plays a role in the balance between the two terms in (3.12).
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For k sufficiently large, we then expect that ‖s(1)
k ‖ will become smaller than the

second term in (3.12), so that the second term ‖X2‖γkτ will start to dominate. For
k > m∗, the first term is zero, so that a bound based on the system in L2 may be
obtained, as in (3.13).

We also need to comment on the expected size of τ and γk. The quantity τ collects
information on the non-normality of L2, and on the size of the data perturbation. We
already mentioned the role of the transfer function norm, which appears as ‖(zI −
L2)−1c(2)‖ ≤ ‖(zI − L2)−1‖ ‖c(2)‖. Therefore, the size of the noise-related data,
‖c(2)‖, may be amplified significantly on a non-normal problem. On the other hand,
the radius ρ also plays a role. We recall that ‖(zI − L2)−1‖ ≤ dist(z,F(L2))−1

where F(L2) is the field of values6 of L2. Therefore, the circle ∆2 may be set to be
sufficiently far from F(L2) (see Figure 3.1), so that ‖(zI−L2)−1‖ be of moderate size,
while maintaining ρ not too large, so as not to influence γk (see below). In that case,
ρ‖(zI − L2)−1‖ � 1, implying τ ≈ ‖c(2)‖. Similar considerations hold for the bound
(3.13). The quantity γk is the maximum value of the GMRES residual polynomial
on the circle ∆2. If the circle tightly surrounds zero, then γk is usually very close
to one since the residual polynomial φk satisfies φk(0) = 1. Circles of larger radius
may cause γk to assume significantly larger values, depending on the location of the
polynomial roots θ’s. We found that values of the radius ρ within ‖L1‖ provided good
bounds; in general however we tried to selected values of ρ significantly smaller; see
the examples below.
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Fig. 3.1. Location of the spectra of L1 and L2, and choice of the circle ∆2 in Theorem 3.8.

Example 3.9. We consider the wing example from the Matlab Regularization
Toolbox [20, 22]. We generate the data with dimension n = 100, and the largest few
eigenvalues of A in absolute value are

3.7471e-01

-2.5553e-02

7.6533e-04

6The field of values of an n× n matrix L is defined as F(L) = {z∗Lz : z ∈ Cn, ‖z‖ = 1}.
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-1.4851e-05

2.1395e-07

-2.4529e-09

2.3352e-11

-1.8998e-13

1.3260e-15

We perturb the right-hand side b as b̃ = b + εp, with p having normally distributed
random entries and ‖p‖ = 1. With the explicit Schur decomposition of the matrix, we
take as L1 the portion of B corresponding to the largest six eigenvalues in absolute
value (that is m∗ = 6), down to λ6 = −2.4529 · 10−9; for this choice we have ‖G‖ =
2.29 · 10−5 and ‖P‖ = 10.02. This choice of L1 was used to ensure that there is a
sufficiently large gap between L1 and L2, while still being able to assume that ‖L2‖
is mainly noise. Note that since all relevant eigenvalues are simple, m∗ = m for this
example. We then take a circle of radius ρ = 2 ·10−9 < dist(spec(L1), 0). We compute
the invariant subspace basis [X1, X2] as in (3.4), where P was obtained by solving the
associated Sylvester equation.

We note that for ε = 10−7 we have ‖Y ∗1 c‖ = 1 and ‖Y ∗2 c‖ = 6.7 · 10−7, while
for ε = 10−5 we obtain ‖Y ∗2 c‖ = 6.49 · 10−5; all these are consistent with the used
perturbation ε.

Table 3.1 reports some key quantities in the bound of Theorem 3.8 for a few
values of ε at different stages of the GMRES convergence. For k < m∗ = 6 we see

that the two addends of the bound in (3.12) perform as expected: ‖s(1)
k ‖ dominates

for the first few iterations, after which the second term leads the bound, providing a
quite good estimate of the true residual norm, ‖rk‖. A larger perturbation ε makes
this dominance effect more visible at an earlier stage.

Table 3.1
Example 3.9. Wing data. Key quantities of Theorem 3.8. L1 of size 6 × 6 (m∗ = 6), so that

‖G‖ = 2.29 · 10−5 and ‖P‖ = 10.02. Circle of radius ρ = 2 · 10−9.

ε k ‖s(1)
k ‖ ‖X2‖γkτ Bound ‖rk‖

(3.12) or (3.13)
10−7 2 1.640e-03 6.770e-06 1.647e-03 1.640e-03

3 3.594e-05 6.770e-06 4.271e-05 3.573e-05
10 6.712e-06 6.311e-07

10−5 2 1.621e-03 6.770e-04 2.298e-03 1.640e-03
3 6.568e-05 6.770e-04 7.427e-04 7.568e-05
10 6.442e-04 6.308e-05

Example 3.10. We consider the baart example from the same toolbox as in
the previous example. This example will be considered again in later sections. The
leading eigenvalues for the 100× 100 matrix are

2.5490e+00

-7.2651e-01

6.9414e-02

-4.3562e-03

2.0292e-04

-7.5219e-06

2.3168e-07

-6.1058e-09
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Table 3.2
Example 3.10. Baart data. Key quantities of Theorem 3.8. L1 of size 7× 7 (m∗ = 7), so that

‖G‖ = 6.4357 · 10−3 and ‖P‖ = 1.48. Circle of radius ρ = 2 · 10−7.

ε k ‖s(1)
k ‖ ‖X2‖γkτ Bound ‖rk‖

(3.12) or (3.13)
10−7 2 1.590e-02 5.851e-08 1.590e-02 1.590e-02

3 5.105e-06 5.851e-08 5.165e-06 5.105e-06
10 1.062e-07 3.188e-08

10−5 2 1.590e-02 5.851e-06 1.590e-02 1.590e-02
3 5.404e-06 5.851e-06 1.125e-05 6.110e-06
10 1.062e-06 3.188e-06

1.4064e-10

-2.8770e-12

5.2962e-14

We consider m∗ = 7, giving ‖G‖ = 6.4357 · 10−3 and ‖P‖ = 1.48, and we chose
ρ = 2 · 10−7. Also in this case, m∗ = m as all involved eigenvalues are simple. For
ε = 10−7 we have ‖Y ∗1 c‖ = 1 and ‖Y ∗2 c‖ = 3.26 · 10−8, while for ε = 10−5 we obtain
‖Y ∗2 c‖ = 3.26 · 10−6.

Table 3.2 reports some key quantities in the bound of Theorem 3.8 for a few
values of ε at different stages of the GMRES convergence.

The digits in the table fully confirm what we found in the previous example,
although here the addend carrying the perturbation is less dominant in the early
phase of the convergence history.

Since ‖L−1
1 ‖ ‖L2‖ ≈ 0.061, we see that Theorem 3.2 gives a much worse resid-

ual estimate for this example, where the eigenvalues are not so well separated as in
Example 3.4.

3.3. On the Solution Error. The GMRES algorithm delivers a monotonically
non-decreasing residual norm ‖r‖ = ‖c−By‖, and we have shown that under certain
spectral hypotheses on B, this norm can be sufficiently small. We will now discuss the
error in that approximation. Assume first that both ‖G‖ and ‖L2‖ are much smaller
than σm(L1) and can be considered as small perturbations of an underlying noise-free
linear system L1x = c(1) with solution x(1). The residual of the approximate solution
y(1) can be bounded as follows:

‖L1y
(1) − c(1)‖ ≤ ‖G‖ ‖y(2)‖+ ‖r‖, y =

[
y(1)

y(2)

]
.

Using standard perturbation theory for linear systems, see e. g. [25, Section 7.1], and
putting κ(L1) = σ1(L1)/σm(L1), we get

‖x(1) − y(1)‖
‖x(1)‖

≤ 2εκ(L1)

1− εκ(L1)
, ε =

‖G‖ ‖y(2)‖+ ‖r‖
‖L1‖ ‖y(1)‖+ ‖c(1)‖

.

However, the above argument presupposes that the actual linear system is in Schur
form and is a perturbation of an underlying system of smaller dimension. In general
this may not be a likely situation. Therefore, if σm(L1)� ‖G‖ � ‖L2‖, then it may
be more realistic to consider y as an approximate solution of the underdetermined
system

B1x =
[
L1 G

]
x = c(1). (3.14)



Solving Ill-Posed Linear Systems with GMRES 13

Let x∗ be the minimum norm solution of (3.14), and put r(1) = c(1) − B1y; then, of
course, ‖r(1)‖ ≤ ‖By − c‖ = ‖r‖. In a numerical example we will show that ‖r(1)‖
can actually be much smaller than ‖r‖.

We will now bound x∗ − y. Using a LQ decomposition of B1 we have

B1 =
[
L1 G

]
=
[
S 0

] [Z11 Z12

Z21 Z22

]
= S

[
Z11 Z12

]
, (3.15)

where S is lower triangular and Z is unitary. We can now prove the following bound
for the approximate solution of (3.14).

Theorem 3.11. Let y be an approximate solution solution of (3.14), and denote
the residual r(1) = B1y − c(1). Then, assuming that κ(B1) ‖r(1)‖/‖c(1)‖ < 1, we get
the bound

‖y − x∗‖
‖x∗‖

≤ 2κ(B1)
‖r(1)‖
‖c(1)‖

+
‖G‖

σm(B1)

‖y(1)‖
‖x∗‖

+
‖y(2)‖
‖x∗‖

+O(‖r(1)‖2). (3.16)

Proof. Using the LQ factorization of B1 we have

c(1) = B1x∗ =
[
S 0

]
Zx∗ =

[
S 0

] [x̄(1)
∗
0

]
,

where the lower part x̄
(2)
∗ of the vector x̄∗ = Zx∗ is equal to zero due to the fact that

x∗ is the minimum norm solution. Defining ȳ = Zy, we then have

‖y − x∗‖ ≤ ‖ȳ(1) − x̄(1)
∗ ‖+ ‖ȳ(2)‖.

Since ‖B1y − c(1)‖ = ‖Sȳ(1) − c(1)‖, ȳ(1) is an approximate solution of the system
Sx = c(1), and we can use standard theory for linear systems [25, Section 7.1], and
bound

‖x̄(1)
∗ − ȳ(1)‖
‖x̄(1)
∗ ‖

≤ 2εκ(B1)

1− εκ(B1)
, ε =

‖r(1)‖
‖B1‖‖ȳ(1)‖+ ‖c(1)‖

.

We immediately get

‖x̄(1)
∗ − ȳ(1)‖
‖x̄(1)
∗ ‖

≤ 2κ(B1)
‖r(1)‖
‖c(1)‖

+O(‖r(1)‖2).

It remains to bound ‖ȳ(2)‖ = ‖Z21y
(1) + Z22y

(2)‖. Using the LQ decomposition
(3.15) we have

[
Z11 Z12

]
=
[
S−1L1 S−1G

]
, which, since ‖S−1‖ = 1/σm(B1),

gives the inequality ‖Z12‖ ≤ ‖G‖/σm(B1). The unitarity relations for Z imply that
the eigenvalues of Z∗21Z21 are the same as those of Z12Z

∗
12, so the singular values of

Z12 are the same as those of Z21, which means that Z21 satisfies

‖Z21‖ ≤
‖G‖

σm(B1)
.

Then, since ‖Z22‖ ≤ 1, we get the second and third terms in (3.16).
The first term in the error bound (3.16) depends on the conditioning of the prob-

lem and on how small a residual is produced by the solution method (see also the
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last paragraph of this section). The second and third terms depend on the null-space
component of the approximate solution. The bound indicates that if we want the
computed solution to be a good approximation of x∗ we should iterate in the GMRES
procedure until the residual By− c is of the order δ, so that the first term in the error
estimate is small. On the other hand, we do not want to perform too many iterations,
because the third term with ‖y(2)‖ grows as the iteration proceeds. Since in step k
we have

y =

[
y(1)

y(2)

]
=

[
W

(1)
k

W
(2)
k

]
z,

for some z, it is sufficient to study the growth of W
(2)
k , with ‖W (2)

1 ‖ ≈ ‖c(2)‖/‖c(1)‖,
which is assumed to be small. In the following theorem we give a bound for the growth
as the GMRES iterations proceed.

Theorem 3.12. Let BWk = Wk+1Hk be the Arnoldi factorization after k steps
of GMRES for the system By = c. Then

‖W (2)
k+1‖F ≤

k∏
j=1

ηj
‖c(2)‖
‖c(1)‖

, ηj ≤

(
1

h2
j+1,j

(‖B‖+ ‖L2‖)2 + 1

) 1
2

. (3.17)

Proof. Let Hk = Ĥk + hk+1,kek+1e
T
k , where Ĥk = W ∗kBWk. Then the lower part

of the Arnoldi factorization can be written L2W
(2)
k = W

(2)
k ĤK+hk+1,kw

(2)
k+1e

T
k , which

gives

‖w(2)
k+1‖ ≤

1

|hk+1,k|
(‖Ĥk‖+ ‖L2‖)‖W (2)

k ‖ ≤
1

|hk+1,k|
(‖B‖+ ‖L2‖)‖W (2)

k ‖F . (3.18)

Squaring this inequality, adding ‖W (2)
k ‖2F to both sides, and taking the square root,

we get

‖W (2)
k+1‖F ≤ ηk‖W

(2)
k ‖F ,

which leads to (3.17).
Remark 3.13. The last inequality in (3.18) does not take into account that

always ‖W (2)
k ‖ ≤ 1, while ‖W (2)

k ‖F can be larger than 1. On the other hand, it is

the initial growth of ‖W (2)
k ‖ and ‖W (2)

k ‖F that is interesting. Well before ‖W (2)
k ‖ is

starting to get close to 1, the iterations should be stopped.
In order to balance the decreasing and the increasing parts of the error bound,

we use the discrepancy principle as stopping criterion: As soon as the residual norm
is of the order δ, we stop the iterations, thereby iterating long enough so that the first
term in the bound (3.16) becomes small, and at the same time avoiding the null-space
component to grow.

Next consider the case when the eigenvalues are not well clustered and sepa-
rated. This situation accurs frequently when dealing with unpreconditioned ill-posed
problems. Our Theorem 3.8 shows that GMRES approximates well the solution com-
ponents that are associated with the largest eigenvalues, and as the iterations proceed,
smaller eigenvalues come into play. Assuming for the moment that the right-hand side
is exact, the solution can be written in the form[

y(1)

y(2)

]
=

[
L−1

1 (c(1) −Gy(2))
L−1

2 c(2)

]
,
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no matter how we partition the problem, i.e., no matter what dimension we choose
for L1. For the solution to be bounded this requires that there is a fast decay of the
components of c, since L2 has very small eigenvalues. After a few iterations GMRES
gives a reasonable approximation of L−1

1 c(1). Now, as is customary in the analysis
of the stabilizations for ill-posed problems, let δc be a perturbation of the right-hand
side, and δy be the corresponding perturbation of the solution. Then we have[

δy(1)

δy(2)

]
=

[
L−1

1 (δc(1) −Gδy(2))
L−1

2 δc(2)

]
.

As long as L1 is well-conditioned and the small eigenvalues do not influence the
solution, the perturbation will remain harmless. But it will blow up gradually as the
iterations proceed. The optimal number of steps is the one that gives an accurate
approximate solution at the same time as the blow-up of the data perturbation is kept
low. The natural stopping criterion is the discrepancy principle, see the analysis in
[8].

In our numerical experiments we have observed that GMRES applied to (3.1) can
produce approximate solutions y such that ‖r(1)‖ = ‖B1y − c(1)‖ � ‖By − c‖ = ‖r‖.
In actual large-scale computations we do not have access to the Schur decomposition7,
so we cannot obtain r(1). However, consider the the quantity

B∗r = B∗
[
r(1)

r(2)

]
=

[
L∗1r

(1)

G∗r(1) + L∗2r
(2)

]
.

Since we have assumed that ‖L2‖ � ‖L1‖, we see that the occurrence that ‖B∗r‖ �
‖r‖ gives an indication that ‖r(1)‖ is considerably smaller that ‖r‖. The same is true
if ‖A∗s‖ � ‖s‖, where s = b − Ax, since ‖A∗s‖ = ‖B∗r‖. This is illustrated in
Figure 5.9. In light of these considerations, we would like to encourage monitoring
‖A∗s‖ during the GMRES iterations as a companion of a stopping criterion based on
the discrepancy principle.

4. Singular Preconditioners for Ill-posed Problems. Preconditioners are
used routinely for solving linear systems Ax = b using Krylov methods. For the
discussion we first assume that the matrix A corresponds to a well-posed problem,
by which we mean that its condition number is of moderate magnitude. We will be
concerned with right preconditioners. Usually one derives and computes a nonsingular
approximation M of A and then solves the equivalent linear system

AM−1y = b, x = M−1y,

using the Krylov method. The reason why we use a right preconditioner is that we
will apply the discrepancy principle [12, p. 83],[21, p. 179], which means that we
are not interested in solving the linear system Ax = b exactly, but only determine an
approximation x̂ with residual ‖Ax̂−b‖ ≈ δ. With a right preconditioner we can read
off the magnitude of the residual directly in the GMRES iterations, actually without
computing x̂ explicitly.

Assume, for instance, that A represents a differential operator with variable coef-
ficients. Then M may be a discretization of the corresponding operator with constant
coefficients. Apart from being a good approximation, M should be chosen so that it

7Either because it is too expensive to compute, or the matrix A is not available explicitly, see
Sections 4 and 5.3.
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is easy (cheap) to solve a system Mz = v. That is so in the above constant coefficient
case if the geometry of the problem allows for a fast solver. In other cases, when
A has Toeplitz structure, a circulant preconditioner M may be used, for which the
system Mz = v can be solved cheaply using the Fast Fourier Transform.

Consider now a linear system of equations Ax = b, which represents a discrete,
ill-posed problem, i.e. the matrix A is a discretization of an operator equation Ax = b,
where A is a compact operator [12]. Then A is extremely ill-conditioned, typically
with a gradual decay of singular values and a cluster of singular values at zero.

There are several papers [17, 16, 18, 29, 30, 23] that propose the use of precondi-
tioners for large scale discrete ill-posed problems. The problem with such a precondi-
tioner is that if M is a good approximation of A, then also M is very ill-conditioned.
Assume for instance that M is a circulant matrix [17], written as

M = FΛFH ,

where F is the Fourier matrix, and Λ is a diagonal matrix of eigenvalues. In order to
“regularize” the preconditioner, the small eigenvalues are replaced by ones, i.e. the
preconditioner is chosen as

M†I = F

[
Λ−1

1 0
0 I

]
FH .

In this paper, motivated by the application to Cauchy problems for a parabolic PDE
in two space dimensions, see [32, Part III] and Section 5.3, we instead choose to
use another type of regularized, singular preconditioner, defined using a semianalytic
expansion of the solution of a corresponding heat equation. If we were to use this
idea in the case of a circulant preconditioner we would take

M†R = F

[
Λ−1

1 0
0 0

]
FH .

Thus we solve the singular linear system

AM†Ry = b, (4.1)

with the GMRES method, and then compute x = M†Ry. A somehow related approach
was proposed in [2], where however the singular preconditioner was generated by
means of a projection argument, instead of a pseudo-inverse strategy.

As was shown in Section 3, the distribution of eigenvalues of AM†R determines
the rate of convergence and the quality of the GMRES solution. In fact, the reg-
ularized singular preconditioner also induces regularization on the solution. This is
clearly seen in the idealized situation when the preconditioner is a truncated singular
value decomposition (SVD) of A. Let A = UΣV T , and MR = UkΣkV

T
k , a rank-k

approximation. Then the system (4.1) becomes UkU
T
k y = b, which is singular with

an eigenvalue of multiplicity k equal to 1. Applied to that system, GMRES will give
the solution y = UkU

T
k b, according to Proposition 2.1. Then x = M†Ry = VkΣ−1

k UTk b,
which is the truncated SVD solution of Ax = b. In a more general setting, with MR

a good approximation of the low frequency part of A, the application of M†R to the
result y of the GMRES iterations will filter away the high frequency and null-space
parts and the semi-convergence phenomenon will not be visible in the solution. This
also means that in this case the process will not be sensitive to the choice of stopping
criterion, as long as the number of iterations is not too small.
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5. Numerical Examples. In the literature on the numerical solution of inverse
and ill-posed problems the main purpose is to construct stable methods for solving
unstable problems. Then one often solves problems constructed from equations given
as integral and differential equations and adds perturbations to the data to test the
stability of methods. The perturbations are also intended to simulate measurement
errors that occur in real applications. We will follow this approach below.

5.1. An Ill-Posed Problem. Our first example is a discretization Kf = g of
an integral equation of the first kind [1] (test problem baart in [20, 22]),∫ π

0

exp(s cos t)f(t)dt = 2 sinh(s)/s, 0 ≤ s ≤ π/2,

with solution f(t) = sin t. The singular values and the eigenvalues of the matrix K
of dimension n = 200 are illustrated in Figure 5.1.
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Fig. 5.1. Singular values and eigenvalues of the matrix K for the baart problem. Note that all
eigenvalues except the three of largest magnitude belong to a cluster at the origin.

Clearly K is numerically singular. However, it is not easy to decide about its
numerical rank. No matter what value, between 2 and 11, of the dimension of L1 in
the ordered Schur decomposition we choose, the smallest singular value of L1 is much
smaller than the norm of G.

We added a normally distributed perturbation of norm 10−4 to the right hand side,
and performed 10 GMRES steps. In Figures 5.3 and 5.4 we illustrate the approximate
solution at iterations 2-5. For comparison we also show the solution using Tikhonov
regularization, minf{‖Kf −gm‖2 +µ2‖Lf‖2}, where L was a discrete first derivative.
The value of the regularization parameter was chosen according to the discrepancy
principle: it was successively halved until the least squares residual was smaller than
a tolerance, see below.
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Fig. 5.2. Baart example: Relative residual (left) and relative error (right) as functions of the
GMRES step number. The circle marks when the stopping criterion was first satisfied.

In Figure 5.2 we give the relative residual and relative error for the GMRES
iterations. Clearly the residual stagnates after 3 steps, and the solution starts to
diverge after 4. This is also seen in Figures 5.3-5.4.

The discrepancy principle is used as stopping criterion. The data error is ‖g −
gm‖ ≈ 10−4. If we choose m = 4, then ‖c(2)‖ ≈ 10−4. The iterations are stopped
when the norm of the residual is smaller than 2 · 10−4. In Figure 5.2 we mark when
the stopping criterion was satisfied. The results agree with those in [27, Example 5.3],
and are explained by our theoretical analysis in Sections 3.2 and 3.3.
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Fig. 5.3. Baart example: Exact solution (solid), GMRES solution (dashed), and Tikhonov
solution for µ = 0.03125 (dashed-dotted). Left: after 2 GMRES iterations, right: after 3.

5.2. A Preconditioned Ill-Posed Problem. In this example we solve numer-
ically a Cauchy problem for a parabolic PDE in the unit square (we will refer to it as
Cauchy-1D). The purpose is not to propose a method for solving an ill-posed problem
in one space dimension (because there are other, simpler methods for that), but to
analyze numerically and illustrate why the preconditioned GMRES method works for
the corresponding problem in two space dimensions.
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Fig. 5.4. Baart example: Exact solution (solid), GMRES solution (dashed), and Tikhonov
solution (dashed-dotted). Left: after 4 GMRES iterations, right: after 5.

The Cauchy problem is

(a(x)ux)x = ut, 0 ≤ x ≤ 1, 0 ≤ t ≤ 1, (5.1)

u(x, 0) = 0, 0 ≤ x ≤ 1, (5.2)

ux(1, t) = 0, 0 ≤ t ≤ 1, (5.3)

u(1, t) = g(t), 0 ≤ t ≤ 1, (5.4)

where the parabolic equation has a variable coefficient

a(x) =

{
1, 0 ≤ x ≤ 0.5,

2, 0.5 ≤ x ≤ 1.

The solution f(t) = u(0, t) is sought. This problem, which we call the sideways heat
equation, is severely ill-posed, see, e.g., [4, 10, 11]. It can be written as a Volterra
integral equation of the first kind,∫ t

0

k(t− τ)f(τ)dτ = g(t), 0 ≤ t ≤ 1. (5.5)

The kernel k(t) is not known explicitly in the case of a variable coefficient a(x). We
compute it by solving (using Matlab’s stiff solver ode23s) a well-posed problem (5.1)-
(5.3) and as boundary values at x = 0 an approximate Dirac delta function at t = 0.
The integral equation (5.5) is then discretized giving a linear system of equations

Kf = gm, (5.6)

of dimension n = 200, where K is a lower triangular Toeplitz matrix, illustrated in
Figure 5.5. To construct the data we selected a solution f , solved (5.1)-(5.3) with
boundary values u(0, t) = f(t) using Matlab’s ode23s. The data vector g was then
obtained by evaluating the solution at x = 1. To simulate measurement errors we
added a normally distributed perturbation gm = g + η, where ‖η‖ = 10−2.

As the diagonal of K is equal to zero, this is an eigenvalue of multiplicity 200,
and the assumptions of Section 3 are not satisfied. Therefore it is not surprising that
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Fig. 5.5. Cauchy-1D example. Matrix and singular values.

the linear system (5.6) cannot be solved by GMRES, see [27, Example 5.1] and [8,
Example 4.1], where a closely related sideways heat equation is studied.

On the other hand, for this problem the initial decay rate of the singular values
is relatively slow, see Figure 5.5, and therefore it should be possible to solve approxi-
mately a regularized version of (5.6). To this end we precondition the linear system
by a problem with a constant coefficient a0 = 1.5. The kernel functions are given in
Figure 5.6.
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Fig. 5.6. Cauchy-1D example. Left: Kernel function k(t) for the operator with variable coef-
ficients (solid) and for the constant coefficient (dashed). Right: Eigenvalues of the preconditioned

matrix KM†R.

For the discretized problem with constant coefficient with matrix K0 we compute
the SVD, K0 = UΣV T , and define the preconditioner as a truncation to rank p = 20
of the pseudoinverse,

M†R = VpΣ
−1
p UTp .

The eigenvalues of the preconditioned matrix KM†R are illustrated in Figure 5.6.

Clearly, the numerical rank of KM†R is equal to p. We also computed the ordered

Schur decomposition (3.1) of KM†R. The matrix L1 had condition number κ2(L1) =
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σ1(L1)/σk(L1) = 1.43, ‖G‖ = 0.0962, and ‖c(2)‖ ≈ 0.0066. Thus in this example the
data perturbation is larger than ‖c(2)‖.
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Fig. 5.7. Cauchy-1D example. Relative residual (left) and relative error (right) as functions of
iteration index. The circle marks when the stopping criterion was first satisfied.

We applied 15 GMRES iterations to the preconditioned system. The relative
residual and error are given in Figure 5.7. The numerical solution after 4 steps is
illustrated in Figure 5.8, where, for comparison, we also show the solution using
Tikhonov regularization, implemented as in the previous example. It is seen that the
two approximate solutions have comparable accuracy.

The stopping criterion with δ = 0.011 was satisfied after 4 GMRES steps. From
Figure 5.7 we see that the solution accuracy does not deteriorate as the iterations
proceed, cf. the last paragraph of Section 4.

Finally, in Figure 5.9 we demonstrate that ‖r(1)‖ is well approximated by ‖B∗r‖,
and that this part of residual is much smaller than the overall residual ‖r‖. Here we
illustrate 25 GMRES steps to show that after 20 steps the residual for the first part
of the system is of the order of the machine precision.

5.3. A Preconditioned 2D Ill-Posed Parabolic Problem. It is in the nu-
merical solution of Cauchy problems for partial differential equations with variable
coefficients in two or more space dimensions that the application of a singular pre-
conditioner is particularly interesting. Here we consider the problem

ut = (a(x)ux)x + (b(y)uy)y, 0 < x < 1, 0 < y < 1, 0 ≤ t ≤ 1,

u(x, y, 0) = 0, 0 ≤ x ≤ 1, 0 ≤ y ≤ 1,
u(x, 0, t) = u(x, 1, t) = 0, 0 ≤ x ≤ 1, 0 ≤ t ≤ 1,
u(1, y, t) = g(y, t), 0 ≤ y ≤ 1, 0 ≤ t ≤ 1,
ux(1, y, t) = 0, 0 ≤ y ≤ 1, 0 ≤ t ≤ 1,

(5.7)

where u(0, y, t) = f(y, t) is sought from the Cauchy data at the boundary x = 1. The
coefficients are

a(x) =

{
2.5, 0 ≤ x ≤ 0.5,

1.5, 0.5 < x ≤ 1,
, b(y) =

{
0.75, 0 ≤ y ≤ 0.5,

1.25 0.5 < y ≤ 1.

The solution is taken to be

f(y, t) = exp(4− 1

y(1− y)
) exp(4− 1

t(1− t)
),
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Fig. 5.8. Cauchy-1D example. Exact solution (solid), approximate solution after 4 iterations
of preconditioned GMRES (dashed), and Tikhonov solution with µ = 0.015625. The lower solid
curve is the right hand side.

i.e., in order to compute an approximate data function g(y, t) we replace the condition
u(1, y, t) = g(y, t) in (5.7) by u(0, y, t) = f(y, t), which gives a well-posed problem.
After finite difference discretization with respect to x and y, this problem can be
considered as a stiff system of ordinary differential equations of dimension 2500, and
is solved using Matlab’s ode23s. The Cauchy data are then obtained by evaluating
the solution at x = 1.

A discretization of the problem would give a linear system Kf = g. Since we
discretize with n = 50 equidistant points in both the y and t directions that matrix
would have dimension 2500. However, due to the variable coefficients, we cannot
compute the matrix; instead, when in GMRES we multiply a vector by K we solve
a parabolic equation in the same way as we computed g, described in the previous
paragraph.

The preconditioner is based on the approximation of the differential operator by a
corresponding one with constant coefficients. Then, since the geometry is rectangular,
separation of variables can be applied, and a semi-analytic solution formula can be
applied [33] involving an expansion in Fourier series. It is the truncation of this series

that leads to a singular preconditioner M†R, whose rank is equal to nq, where q is
the number of terms in the series. Each term in the series involves, in addition,
the solution of a 1D ill-posed Cauchy problem, using Tikhonov regularization. The



Solving Ill-Posed Linear Systems with GMRES 23

0 5 10 15 20 25
10

−16

10
−14

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

iteration number

re
la

tiv
e 

re
si

du
al

s

Fig. 5.9. Cauchy-1D example. Relative residual norm ‖r‖ (diamonds), ‖r(1)‖ (+), and ‖B∗r‖
(o), as functions of iteration index.

preconditioner is discussed in detail in [31]. In our numerical experiment the data
perturbation was equal to 0.5 · 10−2, the preconditioner regularization parameter was
0.06, and q = 5.
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Fig. 5.10. Relative residual and error as function of the number of iterations. The stopping
criterion was satisfied after 12 steps.

In Figure 5.10 we plot the relative residual and the relative error. Note that also
here the solution accuracy is not sensitive to the exact choice of the stopping criterion.
The approximate solution after the 12’th iteration, when the residual was first smaller
than 0.5 · 10−2, is shown in Figure 5.11.

6. Conclusions. The main contributions of the present paper are the following.
We give an eigenvalue-based analysis of the use of GMRES for almost singular linear
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Fig. 5.11. The solution after 12 iterations (left). To the right the exact solution (solid) and
the approximate solution (dashed) at t = 0.5.

systems of equations. The case of “ill-determined numerical rank” (where there is
no distinct eigenvalue gap) is treated, which is applicable to the use of GMRES for
solving non-selfadjoint ill-posed problems, e.g., certain integral equations of the first
kind, and Cauchy problems for PDE’s.

We also treat the case of well separated and clustered eigenvalues. This gives a
theoretical and algorithmic basis for the use of singular preconditioners for ill-posed
problems. Here and in [31] we solve a Cauchy problem for a parabolic equation with
variable coefficients, with a singular (low-rank) preconditioner based on a correspond-
ing problem with constant coefficients. It is demonstrated that problems, for which
unpreconditioned GMRES does not work, can be solved efficiently using a singular
preconditioner.

It is shown that in both cases a stopping criterion based on the discrepancy
principle will give a numerical solution that is as good an approximation as it is
admissible, given the problem properties and the noise level.

The fact that GMRES with a singular preconditioner can be efficiently applied
opens up new possibilities in the numerical solution of ill-posed problems in two and
three space dimensions, selfadjoint or non-selfadjoint, linear or non-linear. As soon
as it is possible to construct a fast solver for a nearby ill-posed problem, that can be
regularized by cutting off high frequencies8, this can be used as preconditioner. Thus,
in each step of the Krylov method a well-posed problem with variable coefficients,
need be solved, and a fast solver need be applied as preconditioner. With a good
preconditioner only a small number of GMRES (or Conjugate Gradient for selfadjoint
and definite problems) steps will have to be performed.
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