
HSL MI20
C INTERFACE HSL 2011

1 SUMMARY

Given an n×n sparse matrix A and an n−vector z, HSL MI20 computes the vector x = Mz, where M is an algebraic
multigrid (AMG) v-cycle preconditioner for A. A classical AMG method is used, as described in [1] (see also Section
5 below for a brief description of the algorithm). The matrix A must have positive diagonal entries and (most of) the
off-diagonal entries must be negative (the diagonal should be large compared to the sum of the off-diagonals). During
the multigrid coarsening process, positive off-diagonal entries are ignored and, when calculating the interpolation
weights, positive off-diagonal entries are added to the diagonal.
Reference
[1] K. Stüben. An Introduction to Algebraic Multigrid. In U. Trottenberg, C. Oosterlee, A. Schüller, eds, ‘Multigrid’,
Academic Press, 2001, pp 413-532.

ATTRIBUTES — Version: 1.5.1 (8 November 2012) Types: Real (single, double). Precision: At least 8-byte
arithmetic is recommended. Uses: HSL MA48, HSL MC65, HSL ZD11, and the LAPACK routines GETRF and GETRS.
Original date: September 2006. Origin: J. W. Boyle, University of Manchester and J. A. Scott, Rutherford Appleton
Laboratory. Language: Fortran 2003 subset (F95 + TR15581 + C interoperability) Remark: The development of
HSL MI20 was funded by EPSRC grants EP/C000528/1 and GR/S42170.

2 HOW TO USE THE PACKAGE

This package is written in Fortran and a wrapper is provided for C programmers. This wrapper may only implement
a subset of the full functionality described in the Fortran user documentation. The wrapper will automatically convert
between 0-based (C) and 1-based (Fortran) array indexing, so can be used transparently from C. This conversion
involves both time and memory overheads that may be avoided by supplying data that is already stored using 1-based
indexing. The conversion is disabled by setting the control parameter control.f arrays=1 and supplying all data
using 1-based indexing. With 0-based indexing, the matrix is treated as having rows and columns 0,1, . . . ,n− 1. In
this document, we assume 0-based indexing.

The wrapper uses the Fortran 2003 interoperability features. Matching C and Fortran compilers must be used,
for example, gcc and gfortran, or icc and ifort. If the Fortran compiler is not used to link the user’s program, additional
Fortran compiler libraries may need to be linked explicitly.

2.1 Calling sequences

Access to the package requires inclusion of the header file

Single precision version
#include "hsl ma97s.h"

Double precision version
#include "hsl ma97d.h"

It is not possible to use more than one version at the same time.

We use the following type definitions in the different versions of the package:

Single precision version
typedef float pkgtype

All use is subject to licence.
http://www.hsl.rl.ac.uk/ 1

HSL MI20 v1.5.1— C interface
Documentation date: November 8, 2012

HSL MI20 C interface HSL 2011

Double precision version
typedef double pkgtype

The following procedures are available to the user:

mi20 setup takes the matrix A and generates data that is required by the AMG preconditioner.

mi20 precondition performs the preconditioning operation x = Mz, where M is the AMG preconditioner and z is
a user-supplied vector.

mi20 finalize should be called after all other calls are complete for a problem to free memory associated with the
keep variable.

2.2 The derived data types

For each problem, the user must employ the structures defined in the header file to declare scalars of the types
mi20 control, mi20 info and a void * pointer for keep. The following pseudocode illustrates this.

#include "hsl_mi20d.h"
...
void *keep;
struct mi20_control control;
struct mi20_info info;
...

The members of mi20 control and mi20 info are explained in Sections 2.2.1 and 2.2.2. The void * pointer is used
to pass data between the subroutines of the package and must not be altered by the user.

2.2.1 The derived data type mi20 control for holding control parameters

The derived data type mi20 control is used to hold controlling data. The members, which may be given default
values through a call to mi20 default control, are as follows.

C only controls

int f arrays indicates whether to use C or Fortran array indexing. If f arrays!=0 (i.e. evaluates to true) then
1-based indexing of the arrays ptr and col is assumed. Otherwise, if f arrays=0 (i.e. evaluates to false),
these arrays are copied and converted to 1-based indexing in the wrapper function. All descriptions in this
documentation assume f arrays=0. The default is f arrays=0 (false).

Controls used by mi20 setup (in alphabetical order)

int aggressive controls the coarsening used. If aggressive=1, normal (non-aggressive) coarsening is used. For
values greater than 1, aggressive coarsening is used, and the value determines the number of coarsening steps
that are applied between levels (see Section 5.1.2). The default is 1. Restriction: aggressive≥ 1.

int c fail controls the coarsening failure criteria. A value of 1 indicates that coarsening terminates if any row in
a coarse level matrix has at least one strictly positive entry but no negative off-diagonal entries. A value of 2
indicates that coarsening terminates if all the rows in a coarse level matrix have at least one strictly positive
entry and no negative off-diagonal entries or if the lack of negative negative off-diagonals causes coarsening to
fail. The default is 1. Restriction: c fail = 1 or 2.

All use is subject to licence.
http://www.hsl.rl.ac.uk/ 2

HSL MI20 v1.5.1— C interface
Documentation date: November 8, 2012

HSL 2011 C interface HSL MI20

int max levels holds the maximum number of coarse levels in the multigrid structure that is generated by
mi20 setup. The default is 100. Restriction: max levels≥ 1.

int max points controls termination of coarsening. Coarsening terminates if either the number of coarse levels is
max levels or the number of points in a coarse level is less than or equal to max points. The default is 1.
Restriction: max points> 0.

int one pass coarsen indicates whether one pass coarsening is used. If one pass carsen!=0 (i.e. evaluates to
true), one pass coarsening is used. This reduces the time required at each level to construct the coarse and
fine points (and can significantly reduce the time required to compute the preconditioner) but it may result in a
poorer quality preconditioner. The default is one pass coarsen=0 (false).

pkgtype reduction controls reduction in coarsening. If two successive levels have nc and n f points, respectively,
coarsening continues while nc ≤ n f ∗reduction. reduction must be at least 0.5 and at most one 1. The default
value is 0.8.

int st method controls the method used to find strong transpose connections (see Section 5.1.1). If st method =
1, they are found as they are required; if st method = 2, they are found before coarsening starts and stored.
If the matrix has an unsymmetric sparsity pattern, method 2 is always used. The default is 2. Restriction:
st method = 1 or 2.

pkgtype st parameter is used in determining whether connections are strong or weak (see Section 5.1.1 for
details). The default is 0.25 but for some applications (especially in 3D), it can be advantageous to use a
larger value. Restriction: 0.0≤st parameter≤ 1.0.

int testing controls whether or not the user-supplied matrix data is tested for errors. If testing = 0, no testing is
performed; if testing = 1, the data is tested for duplicates and out-of-range entries (which are not allowed).
Testing involves a small overhead. The default is 1. Restriction: testing = 0 or 1.

pkgtype trunc parameter controls truncation of the interpolation weights. The default is 0.0 (interpolation weights
are not truncated). Restriction: 0.0≤control.trunc parameter< 1.0.

Controls used by mi20 precondition (in alphabetical order)

int coarse solver controls which solver is used on the coarsest level. Possible values are:

1: damped Jacobi (with damping factor damping)

2: Gauss-Seidel

3: sparse direct solver HSL MA48

4: LAPACK dense direct solver GETRF

The default is 3 but note that it may be faster to use an iterative solver (coarse solver = 1 or 2). Restriction:
coarse solver = 1, 2, 3 or 4.

int coarse solver its controls the number of iterations used by the iterative solver on the coarsest level
(control.coarse solver = 1 or 2 only). If control.coarse solver = 2, one iteration comprises a forward
and a backward Gauss-Seidel sweep. The default is 10. Restriction: coarse solver its> 0.

pkgtype damping specifies the damping factor used by the damped Jacobi smoother (control.smoother = 1). The
default is 0.8. Restriction: 0.0<damping≤ 1.0.

pkgtype err tol determines the failure criterion for mi20 precondition. If ‖x‖2 > control.err tol ∗‖z‖2
where x = Mz, an error is returned (see error return -14 in Section 3.3). The default is 1.0e10. Restriction:
err tol> 0.

All use is subject to licence.
http://www.hsl.rl.ac.uk/ 3

HSL MI20 v1.5.1— C interface
Documentation date: November 8, 2012

HSL MI20 C interface HSL 2011

int levels controls the maximum number of coarse levels used before the coarse level solve is performed. A
value < 0 indicates that the maximum number of available coarse levels should be used (that is, the value of
info.clevels returned by mi20 setup, see Section 2.2.2). The default is -1.

int pre smoothing holds the number of pre-smoothing iterations that are performed during each v-cycle (see
Section 5.2). The default is 2. Restriction: pre smoothing≥ 0 and pre smoothing + post smoothing6= 0.

int post smoothing holds the number of post smoothing iterations that are performed (see Section 5.2). If
control.smoother=2, the Gauss-Seidel sweep direction is reversed for the post smoothing and, in this case, if
A is symmetric, post smoothing should be set to be equal to pre smoothing. The default is 2. Restriction:
post smoothing≥ 0 and pre smoothing + post smoothing 6= 0.

int smoother controls which smoother is used during each v-cycle. If smoother=1, damped Jacobi is used; if
smoother=2, symmetric Gauss-Seidel is used (that is, the Gauss-Seidel sweep direct is reversed on the post
smoothing iterations). The default is 2. Restriction: smoother = 1 or 2.

int v iterations controls the number of v-cycle iterations to be performed. The default is 1. Restriction:
v iterations≥ 1.

Printing controls

int error holds the Fortran unit number for the printing of error and warning messages. Printing is suppressed if
error < 0. The default is 6.

int print holds the Fortran unit number for diagnostic printing. Printing is suppressed if print < 0. The default
is 6.

int print level controls the amount of printing. Possible values are:

0: no printing

1: printing of errors and warnings only

2: as 1 plus additional diagnostic printing

The default is 1. Restriction: print level = 0, 1 or 2.

2.2.2 The derived data type mi20 info for holding information

The derived data type mi20 info is used to provide information about the progress of the algorithm. The members of
mi20 info are:

int flag is used as a error and warning flag. See Section 3 for details.

int clevels contains the number of coarse levels generated after a call to mi20 setup,

int cpoints contains the order of the matrix on the coarsest level after a call to mi20 setup,

int cnnz contains the number of nonzeros in the matrix on the coarsest level after a call to mi20 setup,

int getrf info holds the error flag returned by the LAPACK solver GETRF if it is used (control.coarse solver
= 4).

int stat holds, on a relevant error, the Fortran stat parameter for a failed allocation or deallocation; in the event
that the stat parameter is not available, it is set to -99. On a successful exit, stat is set to 0.

All use is subject to licence.
http://www.hsl.rl.ac.uk/ 4

HSL MI20 v1.5.1— C interface
Documentation date: November 8, 2012

HSL 2011 C interface HSL MI20

2.2.3 The AMG setup phase

To set up the AMG preconditioner, a call of the following form must be made:

void mi20_setup(int n, const int ptr[], const int col[], const pkgtype val[],
void **keep, const struct mi20_control *control, struct mi20_info *info);

n must hold the number of rows of A. Restriction: n ≥ 1.

ptr is a rank-1 array of size n+1. ptr[j] must be set by the user so that ptr[j] is the position in col of the first
entry of row j (0≤j≤n-1) and ptr[n] must be set to the number of matrix entries being input by the user. This
argument is not altered by the subroutine.

col is a rank-1 array of size ptr[n]. It must hold the column indices of the entries of A with the column indices
for the entries in row 0 preceding those for row 1, and so on (within each row, the column indices may be in
arbitrary order). It should contain no duplicates or out-of-range entries. The diagonal must be present and all
diagonal entries must be strictly positive. If A is symmetric, the entries in the upper and lower triangular parts
must be entered. This argument is not altered by the subroutine.

keep will be set to point at an area of memory allocated using a Fortran allocate statement that will be used to hold
data about the preconditioner. It must be passed unchanged to the other subroutines. To avoid a memory leak,
the subroutine mi20 finalize must be used to clean up and deallocate this memory when the preconditioner is
no longer required.

control is used to control the actions of the package, see Section 2.2.1.

info is used to return information about the execution of the package as explained in Section 2.2.2. On successful
exit, info.flag is set to 0, otherwise it indicates the error condition encountered. Note that, although a warning
may indicate that coarsening has terminated before the requested number of levels have been computed (see
Section 3.4), the data generated on previous coarse levels may be suitable for preconditioning. info.clevels
is the number of levels that were successfully produced before failure occurred and, provided info.clevels>0,
the user may continue the computation by making subsequent calls to mi20 precondition.

2.2.4 Applying the AMG preconditioner

The AMG v-cycle preconditioner may be applied by making a call as follows.

void mi20_precondition(const pkgtype rhs[], pkgtype solution[],
void **keep, const struct mi20_control *control, struct mi20_info *info);

rhs is a rank-1 array with size n. It must be set by the user to hold the vector z to which the AMG v-cycle
preconditioner M is to be applied.

solution is a rank-1 array with size n. On exit, x contains Mz, where M is the AMG v-cycle preconditioner.

keep must be unchanged since the call to mi20 setup. It is not altered by this subroutine.

control, info: see Section 2.2.3.

All use is subject to licence.
http://www.hsl.rl.ac.uk/ 5

HSL MI20 v1.5.1— C interface
Documentation date: November 8, 2012

HSL MI20 C interface HSL 2011

2.2.5 The finalisation subroutine

A call of the following form should be made after all other calls are complete for a problem (including after an error
return that does not allow the computation to continue) to free memory associated with keep.

void mi20_finalize(void **keep, const struct mi20_control *control,
struct mi20_info *info);

keep must be unchanged since the call to mi20 setup. On exit, *keep will be set to NULL.

control, info: see Section 2.2.3.

3 Error Diagnostics

A successful return from a subroutine in the package is indicated by info.flag having the value zero. A negative
(respectively, positive) value is associated with an error (respectively, warning) message that by default will be output
on Fortran unit control.error. Possible non-zero values are listed below.

3.1 Errors associated with testing the user-supplied matrix

−1 Out-of-range entries found in col.

−2 One or more diagonal entry is missing.

−3 One or more diagonal entry is ≤ 0.

−7 Out-of-range entries found in ptr.

−8 Duplicate entries found in col (that is, one or more rows of A has duplicated column indices).

−9 n < 1.

3.2 Errors associated with out-of-range control parameters

−100 control.testing out-of-range.

−101 control.st parameter out-of-range.

−102 control.err tol out-of-range.

−103 control.max points out-of-range.

−104 control.st method out-of-range.

−105 control.aggressive out-of-range.

−106 control.c fail out-of-range.

−107 control.v iterations out-of-range.

−108 control.smoother out-of-range.

−109 control.pre smoothing out-of-range.

−110 control.post smoothing out-of-range.

All use is subject to licence.
http://www.hsl.rl.ac.uk/ 6

HSL MI20 v1.5.1— C interface
Documentation date: November 8, 2012

HSL 2011 C interface HSL MI20

−111 control.pre smoothing + post smoothing = 0.

−112 control.coarse solver out-of-range.

−113 control.coarse solver its out-of-range.

−114 control.print level out-of-range.

−115 control.damping out-of-range.

−116 control.max levels out-of-range.

−118 control.trunc parameter out-of-range.

−119 control.reduction out-of-range.

3.3 Other possible error returns

−10 Allocation error at first level of multigrid process.

−11 Deallocation error at first level of multigrid process.

−12 The coarsening has failed. This is because one or more rows of the user-supplied matrix has at least one strictly
positive entry and no negative off-diagonal entries (control.c fail = 1) or all the rows have at least one
strictly positive entry and no negative off-diagonal entries (control.c fail = 2). The coarsening may also
fail if there are one or more rows with negative off-diagonal entries (that is, rows with strong connections) that
are connected to rows with no negative off-diagonals (that is, to rows with no connections).

−14 The action of the AMG preconditioner on the user-supplied vector z caused an increase in the 2-norm of the
vector greater than control.err tol (mi20 precondition only).

−15 Call to mi20 precondition follows an unsuccessful call to mi20 setup.

−17 Error return from GETRF (see info.getrf info).

−18 Error return from HSL MA48.

3.4 Warnings

If a warning info.flag = 10, 11, 12, or 13 is issued by mi20 setup, a preconditioner has been computed but
coarsening terminated prematurely; the number of coarse levels is info.clevels. After a warning has been issued,
the user may continue the computation by calling mi20 precondition. The following warnings may be issued by
mi20 setup:

1 Method used to find strong transpose connections changed from method 1 to method 2 (see control.st method
in Section 2.2.1).

10 Coarsening terminated because of an allocation error.

11 Coarsening terminated because of a deallocation error.

12 Coarsening terminated. This is because one or more rows of the coarse level matrix had at least one strictly
positive entry but no negative off-diagonal entries (control.c fail = 1) or because all the rows had at least
one strictly positive entry but no negative off-diagonal entries (control.c fail = 2). The coarsening may also
terminate if there are one or more rows with negative off-diagonal entries (that is, rows with strong connections)
that are connected to rows with no negative off-diagonals (that is, to rows with no connections).

All use is subject to licence.
http://www.hsl.rl.ac.uk/ 7

HSL MI20 v1.5.1— C interface
Documentation date: November 8, 2012

HSL MI20 C interface HSL 2011

13 Coarsening terminated because the requirement that the number of points nc and n f on two successive levels
should satisfy nc ≤ n f ∗reduction was not met. See Section 5.1.1.

The following warning may be issued by mi20 precondition:

20 The number of requested levels control levels is greater than the number of available levels (info.clevels).
The number of levels used is info.clevels.

4 GENERAL INFORMATION

Workspace: Provided automatically by the module.

Other modules used directly: HSL MA48, HSL MC65, HSL ZD11, and LAPACK routines GETRF and GETRS.

Input/output: Output is provided under the control of control.print level. In the event of an error or warning,
diagnostic messages are printed. The output units for these messages are controlled by control.print, and
control.error (see Section 2.2.1).

Restrictions: n ≥ 1,
control.aggressive≥ 1,
control.c fail = 1 or 2,
control.max levels≥ 1,
control.max points> 0,
0.5≤ control.reduction≤ 1.0,
control.st method = 1 or 2,
0.0≤control.st parameter≤ 1.0,
control.testing = 0 or 1,
control.coarse solver = 1, 2, 3,
control.coarse solver its> 0,
0.0<control.damping≤ 1.0,
0.0≤control.trunc parameter< 1.0,
control.err tol> 0,
control.pre smoothing≥ 0, control.post smoothing≥ 0,
control.pre smoothing + control.post smoothing6= 0,
control.smoother = 1 or 2,
control.v iterations≥ 1,
control.print level = 1, 2, or 3.

Portability: Fortran 2003 subset (F95 + TR15581 + C interoperability)

5 METHOD

The classical AMG algorithm implemented by HSL MI20 is described in detail in Section 7 of [1]. This implementation
of AMG ignores positive off-diagonal entries during coarsening, adds any positive off-diagonals to the diagonal when
calculating interpolation weights, and uses direct interpolation.

The AMG method was originally devised as a linear solver and it is more intuitive to think of AMG as a solver
when describing the method. It is also important to note that AMG may provide a good preconditioner even when it
fails as a solver (for example, block preconditioning within a larger system).

Consider the linear system Au = f. At the heart of multigrid is a series of ever coarser representations of the
matrix A. Given an approximation û to the solution u, consider solving Ae = r to find the error e, where r is the

All use is subject to licence.
http://www.hsl.rl.ac.uk/ 8

HSL MI20 v1.5.1— C interface
Documentation date: November 8, 2012

HSL 2011 C interface HSL MI20

residual r = f−Aû. Multigrid applies a ‘smoother’ (such as Gauss-Seidel or damped Jacobi) to remove high frequency
components of the error vector. The problem can then be represented by a smaller (coarser) system Acec = rc, which is
cheaper to solve. This idea can be applied recursively, producing a series of coarse levels and coarse error corrections
to the solution. The coarsest (smallest) level is solved using a direct method or a simple iterative scheme such as
Gauss-Seidel. The coarse level solution must then be prolonged to each of the finer levels. When used as a linear
solver, the whole multigrid process is applied iteratively until a solution with the desired tolerance is obtained. The
method can also be used to efficiently precondition a linear system. Typically, preconditioning is a single multigrid
iteration.

Multigrid requires some means of producing coarse level coefficient matrices Ac, together with a means of
transferring the residual and error vectors between the levels; in AMG this is devised algebraically.

5.1 Setup

Coarse level matrices Ac and the interpolation/restriction matrices Ic f are created in the setup phase which comprises
the following steps.

5.1.1 Finding F and C points

To describe AMG coarsening, we associate rows of the matrix A = {ai j} with points (so that row i is associated with
point i) and consider connections between points. We say that point i is connected to point j if ai j < 0.

To generate the next coarse level, points are divided into C points (those points which will exist on the next level),
F points (which must interpolate their values from the C points), and unconnected points. This division is based upon
strong connections. If i is connected to j and |ai j| ≥ θmax{|aik| : aik < 0}, where 0 < θ≤ 1 corresponds to the control
parameter control.st parameter, then we say that i has a strong connection to j and j has a strong transpose
connection to i.

After removing unconnected points, each step of the coarsening process proceeds as follows. Each undecided point
has a weight that is initially the number of its strong transpose connections. An undecided point with maximum weight
is chosen to become a new C point, and points with a strong transpose connection to the new C point become F points.
The weights are then increased by the number of strong connections to the new F points. This process is repeated
until all points are assigned as either F or C points, or until all remaining undecided points have a weight of zero. If
control.one pass coarsen is equal to .false., further checking is performed that aims to improve the quality of
the coarsening by possibly making additional points into C points. If nc and n f are the number of C and F points,
respectively, the coarsening has stagnated if nc≥ n f ∗control.reduction and, in this case, is terminated. Otherwise,
coarsening continues until either the requested maximum number of levels has been reached (control.max levels)
or the number of points has been reduced below a chosen threshold (control.max points).

Throughout the coarsening, it is necessary to know the strong connections (for F points) and the strong transpose
connections (for C points). It is easy to test whether connections to a point are strong (for point i the data required
is contained in row i of the matrix, and this is available since we hold the matrices in compressed row storage (CRS)
format). Testing for strong transpose connections is not so straightforward. To find the strong transpose connections
to point j, we need to know which rows have a non-zero entry in column j. For a general sparse matrix held in CRS
format, we must run through the entire matrix, checking each row. However, if the matrix has a symmetric sparsity
pattern, things are simpler, since if row i has an entry in column j, row j has an entry in column i.

To reduce the number of non-zero entries in the coarse level matrices, the interpolation weights may be truncated.
If control.trunc parameter > 0.0, interpolation weights will be removed from the interpolation matrix if their
value is less than or equal to control.trunc parameter times the largest interpolation weight in their row of the
interpolation matrix. After this, remaining weights are scaled so that row sums remains unchanged

For matrices with a symmetric sparsity pattern, HSL MI20 offers two methods for finding strong transpose
connections. The first, selected by setting control.st method = 1, performs testing as needed; this method is often

All use is subject to licence.
http://www.hsl.rl.ac.uk/ 9

HSL MI20 v1.5.1— C interface
Documentation date: November 8, 2012

HSL MI20 C interface HSL 2011

the fastest. The alternative method (control.st method = 2) finds strong transpose connections before coarsening
and then stores the information; this method is always used when A has an unsymmetric sparsity pattern.

5.1.2 Generate interpolation matrix and Ac

The direct interpolation method is used to calculate the interpolation weights, and this is fully described in [1], with
positive off diagonals effectively removed by adding them to the diagonal. The coarse level coefficient matrix Ac is
generated from the fine level matrix A f and the interpolation matrix Ic f using the Galerkin relation Ac = IT

c f A f Ic f .
If control.aggressive > 1, more than one coarsening step is performed before Ac is calculated; this is known as
aggressive coarsening.

5.2 Preconditioning phase

mi20 precondition takes a user-supplied vector z and returns x = Mz, where M is the AMG preconditioner. The
preconditioner performs control.v iterations v-cycles. Denoting the interpolation matrix from level k to level
k+1 by Ik+1

k and the matrix on level k by Ak, the v-cycles are performed within HSL MI20 as follows:

User-supplied z.
Initialise x = 0; A1 = A; its = 0.
do outer

if (its == max its) stop
z1 = z−Ax
do k = 1,ml−1

Initialise ek = 0
Pre-smooth ek (using damped Jacobi or Gauss-Seidel)
Compute rk = zk−Akek

Restrict rk+1 = Ik+1
k rk

Set zk+1 = rk+1
end do
Solve the coarse grid error correction problem Ak+1ek+1 = zk+1
do k = ml−1,1,−1

Prolong and then update the error correction ek← ek +(Ik+1
k)T ek+1

Post-smooth ek (using damped Jacobi or Gauss-Seidel with the sweep direction reversed)
end do
Update x← x+ e1
its = its+1

end outer

Here max its and ml are the control parameters control.v iterations and control.max levels, respectively.
Further details of the method implemented within HSL MI20, together with numerical results are given in [2].

Reference:
[1] K. Stüben. An introduction to algebraic multigrid. In U. Trottenberg, C. Oosterlee, A. Schüller, eds, ‘Multigrid’,
Academic Press, 2001, pp 413-532.
[2] J. Boyle, M. D. Mihajlovic and J. A. Scott. HSL MI20: an efficient AMG preconditioner. Rutherford Appleton
Technical Report.

All use is subject to licence.
http://www.hsl.rl.ac.uk/ 10

HSL MI20 v1.5.1— C interface
Documentation date: November 8, 2012

HSL 2011 C interface HSL MI20

6 EXAMPLE OF USE

Suppose we wish to use preconditioned conjugate gradients to solve the linear system Ax = b, where A is the
symmetric tridiagonal matrix of order 10 with 2’s on the main diagonal and -1’s on the off diagonals, and b is the
vector of 1’s. Then we may use the following code:

#include <stdlib.h>
#include <stdio.h>
#include "hsl_mi20d.h"

/* MI21 Fortran routines (no C interface available) */
/* As these are F77 style codes, we assume that the C binding merely appends

an underscore to the name of the Fortran routine, and that all data types
match and are pass by reference. THIS WILL NOT WORK ON ALL COMPILERS. */

void mi21id_(int *icntl, double *cntl, int *isave, double *rsave);
void mi21ad_(int *iact, const int *n, double *w, const int *ldw, int *locy,

int *locz, double *resid, int *icntl, double *cntl, int *info, int *isave,
double *rsave);

/* Generate example matrix */
void matrix_gen(const int n, int **ptr, int **col, double **val) {

int i,nnz,p;

nnz = n + 2*(n-1);
ptr = (int) malloc((n+1)*sizeof(int));
col = (int) malloc(nnz*sizeof(int));
val = (double) malloc(nnz*sizeof(double));
p = 0; /* pointer to next empty position */
for(i=0; i<n; i++) {

(*ptr)[i] = p;
if (i==0) { /* first row */

(*col)[p] = i; (*col)[p+1] = i+1;
(*val)[p] = 2.0; (*val)[p+1] = -1.0;
p = p+2;

} else if (i==n-1) { /* last row */
(*col)[p] = i-1; (*col)[p+1] = i;
(*val)[p] = -1.0; (*val)[p+1] = 2.0;
p = p+2;

} else {
(*col)[p] = i-1; (*col)[p+1] = i; (*col)[p+2] = i+1;
(*val)[p] = -1.0; (*val)[p+1] = 2.0; (*val)[p+2] = -1.0;
p = p+3;

}
}
(*ptr)[n] = nnz;

}

/* Calculate b = Ax */
void spmv(int n, const int ptr[], const int col[], const double val[],

double b[], const double x[]) {

All use is subject to licence.
http://www.hsl.rl.ac.uk/ 11

HSL MI20 v1.5.1— C interface
Documentation date: November 8, 2012

HSL MI20 C interface HSL 2011

int i, j;

for(i=0; i<n; i++) {
b[i] = 0;
for(j=ptr[i]; j<ptr[i+1]; j++) {

b[i] += val[j] * x[col[j]];
}

}
}

int main(void) {
const int n = 10; /* size of system to solve */

/* matrix data */
int *ptr, *col;
double *val;

/* derived types */
void *keep;
struct mi20_control control;
struct mi20_info info;

/* Arrays and scalars required by the CG code mi21 */
double cntl[5], rsave[6];
int icntl[8],isave[10],info21[4];
double w[n*4];
double resid;
int locy, locz, iact, i;

/* generate matrix A */
matrix_gen(n, &ptr, &col, &val);

/* Prepare to use the CG code mi21 with preconditioning */
mi21id_(icntl, cntl, isave, rsave);
icntl[3-1] = 1;

/* set right hand side to vector of ones */
for(i=0; i<n; i++) w[i] = 1;

/* initalize control */
mi20_default_control(&control);

/* call mi20_setup */
mi20_setup(n, ptr, col, val, &keep, &control, &info);
if (info.flag < 0) {

printf("Error return from mi20_setup\n");
return 1;

}

All use is subject to licence.
http://www.hsl.rl.ac.uk/ 12

HSL MI20 v1.5.1— C interface
Documentation date: November 8, 2012

HSL 2011 C interface HSL MI20

/* solver loop */
iact = 0;
while(1) {

mi21ad_(&iact, &n, w, &n, &locy, &locz, &resid, icntl, cntl, info21,
isave, rsave);

if (iact == -1) {
printf("Error in solver loop\n");
break;

} else if (iact == 1) {
printf(" Convergence in %d iterations\n", info21[2-1]);
printf(" 2-norm of residual = %e\n", resid);
break;

} else if (iact == 2) {
spmv(n, ptr, col, val, &w[n*(locy-1)], &w[n*(locz-1)]);

} else if (iact == 3) {
mi20_precondition(&w[n*(locz-1)], &w[n*(locy-1)], &keep, &control,

&info);
if (info.flag < 0) {

printf("Error return from mi20_precondition\n");
break;

}
}

}

/* deallocation */
mi20_finalize(&keep, &control, &info);
free(ptr); free(col); free(val);

return 0; /* sucess */
}

This produces the following output:

Convergence in 5 iterations
2-norm of residual = 5.055712e-10

All use is subject to licence.
http://www.hsl.rl.ac.uk/ 13

HSL MI20 v1.5.1— C interface
Documentation date: November 8, 2012

